Improving Spectral Estimation of Soil Organic Carbon Content through Semi-Supervised Regression
نویسندگان
چکیده
Visible and near infrared (VIS-NIR) spectroscopy has been applied to estimate soil organic carbon (SOC) content with many modeling strategies and techniques, in which a crucial and challenging problem is to obtain accurate estimations using a limited number of samples with reference values (labeled samples). To solve such a challenging problem, this study, with Honghu City (Hubei Province, China) as a study area, aimed to apply semi-supervised regression (SSR) to estimate SOC contents from VIS-NIR spectroscopy. A total of 252 soil samples were collected in four field campaigns for laboratory-based SOC content determinations and spectral measurements. Semi-supervised regression with co-training based on least squares support vector machine regression (Co-LSSVMR) was applied for spectral estimations of SOC contents, and it was further compared with LSSVMR. Results showed that Co-LSSVMR could improve the estimations of SOC contents by exploiting samples without reference values (unlabeled samples) when the number of labeled samples was not excessively small and produce better estimations than LSSVMR. Therefore, SSR could reduce the number of labeled samples required in calibration given an accuracy threshold, and it holds advantages in SOC estimations from VIS-NIR spectroscopy with a limited number of labeled samples. Considering the increasing popularity of airborne platforms and sensors, SSR might be a promising modeling technique for SOC estimations from remotely sensed hyperspectral images.
منابع مشابه
Mapping Soil Organic Carbon Using IRS-AWIFS Satellite Imagery (Case Study: Dehaghan Rangeland, Isfahan, IRAN)
Soil organic matter has positive consequences eht rof quality and productivityof soil and also environment, agricultural and biological sustainability and conservation ofbiodiversity and soil. Organic matter plays an important role in the physical and chemicalprocesses of soil and thus, it is of a great effect on the spectral characteristics of soil. Thisstudy was done in order to develop the m...
متن کاملSoil Organic Matter Content Retrieval from Hyperspectral Remote Sensing in Western Jilin, China
The analysis and forecast of the distribution and dynamics of soil organic matter (SOM) content is an essential requirement for sustainable land management, especially in Western Jilin, where the saline-alkalized land increased at a very fast rate per year and is in desperate need of improving soil. Compared to conventional analytical methods, hyperspectral remote sensing is faster, cheaper, no...
متن کاملDevelopment of an Index-based Regression Model for Soil Moisture Estimation Using MODIS Imageries by Considering Soil Texture Effects
Soil moisture content (SMC) is one of the most significant variables in drought assessment and climate change. Near-real time and accurate monitoring of this quantity by means of remote sensing (RS) is a useful strategy at regional scales. So far, various methods for the SMC estimation using a RS data have been developed. The use of spectral information based on a small range of electromagnetic...
متن کاملپایداری خاکدانهها در حضور کرم خاکی (Lumbricus terrestris L.) و مواد آلی مختلف در یک خاک آهکی
Although the crucial function of earthworms in improvement of soil physical properties is well -know, but very little is known of the interactive influence of earthworms and organic materials on soil properties such as soil aggregate stability, particularly in arid and semi-arid soils. The low organic matter content and the significant role of earthworms in improving physical properties of arid...
متن کاملPotential of Landsat-8 spectral indices to estimate forest biomass
Forest ecosystems are among the largest terrestrial carbon reservoirs on our planet earth thus playing a vital role in global carbon cycle. Presently, remote sensing techniques provide proper estimates of forest biomass and quantify carbon stocks. The present study has explored Landsat-8 sensor product and evaluated its application in biomass mapping and estimation. The specific objectives were...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017